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Abstract Precipitation predictability is likely to decrease with water cycle intensification under global
warming, yet how much it will change spatiotemporally is unclear. We quantify the precipitation
predictability changes under future warming usingmodel simulations fromCoupledModel Intercomparison
Project Phase 5. The global‐averaged potential precipitation predictability (PPP) is likely to decrease 0.3% per
1°C increase of global sea surface temperature (SST), with a decrease of 0.8% and 0.1% in tropical and
extratropical regions, respectively, under future warming scenarios. The PPP changes are divergent among
different models with considerable uncertainty. The estimated declining PPP is closely related to the increase
of SST and the decrease of potential SST predictability based on a statistical regression analysis. These
results unravel the changing pattern of precipitation predictability under future warming.

Plain Language Summary Precipitation prediction for several weeks or months in advance
provides opportunities for the preparation of extreme weather events such as droughts and floods. The
predictable ability of precipitation determines how long it can be forecasted. We found that precipitation is
becoming more difficult to predict when the global sea surface temperature (SST) continues to increase
in the future, although different models show divergent results. The decreasing precipitation predictable
ability is well explained by the increasing SST and the decreasing predictable ability of SST. Although
extreme precipitation events may increase in a warmer world in the context of the enhanced SST variability
and other changes such as sulfate aerosols and land use, precipitation is probably less predictable as a
result of lower predictable ability of SST.

1. Introduction

Precipitation is a key climatic variable influencing global water cycle and Earth's energy budgets. Accurate
precipitation forecasting is vital for early drought warning, flooding preparation, and water resources man-
agement (Hao et al., 2014; Hartmann et al., 2016; Silvestro & Rebora, 2014). The predictability of precipita-
tion is assumed as the limit of predictable ability for a given lead time. The classic predictability measures the
reproducing ability of predictands by predictors. Precipitation predictability cannot be directly obtained as
precipitation is influenced by numerous factors. Potential predictability (G. J. Boer, 2004) is another way
to quantify predictability from a variance fraction perspective. It describes the fraction of long‐term variabil-
ity that may be distinguished from the internally generated natural variability which is not predictable on
long time scales and therefore may be considered as “noise.” Potential predictability is similar to signal‐
to‐noise ratio and describes the potential predictable ability, which is widely used to evaluate the precipita-
tion predictability in previous studies (G. Boer, 2009; G. Boer & Lambert, 2008; Kang et al., 2004; Lou
et al., 2019; W. Wei et al., 2017). Therefore, potential precipitation predictability (PPP) is introduced to esti-
mate precipitation predictability over global lands.

The accuracy of precipitation prediction varies with regions, models, and time scales (Papacharalampous
et al., 2018; Xu et al., 2018). Precipitation predictability is generally higher in tropical than extratropical
regions because of deep convection in the tropics (Koster et al., 2000; S. Li & Robertson, 2015; Westra &
Sharma, 2010; Wheeler et al., 2017; Zhu et al., 2014). Two significant tropical climate patterns, that is, EI
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Niño–Southern Oscillation (ENSO) and Madden‐Julian Oscillation (MJO), contribute largely to precipita-
tion predictability at subseasonal to seasonal time scales (DelSole et al., 2017; Koster et al., 2000; Westra &
Sharma, 2010). Both statistical approaches and dynamic climate models are commonly used to evaluate pre-
cipitation predictability (G. Boer & Lambert, 2008; DelSole et al., 2017; Papacharalampous et al., 2018;
Wheeler et al., 2017; Xu et al., 2018). As for the predictability in the future, the Coupled Model
Intercomparison Project Phase 5 (CMIP5) (Taylor et al., 2012) includes numerous climate simulations under
a variety of warming scenarios. Precipitation is predictable over 2 weeks mainly over tropical areas due to
low‐frequency climate variability (S. Li & Robertson, 2015), and the predictability decreases with the
increase of lead time (Wheeler et al., 2017; Zhu et al., 2014).

The weather and climate predictability is likely to decrease under future global warming (G. Boer, 2009;
DelSole et al., 2014; S. Li et al., 2020). It is projected that precipitation variability will increase in a warmer
world (Pendergrass et al., 2017). However, precipitation predictability is dependent not only on the varia-
bility of climatology but also on the variability over different time scales. A recent study concludes that the
minimum PPP will increase under future warming based on persistence method (Giorgi et al., 2019).
Some studies found that precipitation predictability may not decrease because of new emerging telecon-
nections under recent global warming (Mamalakis et al., 2018; Wang et al., 2015). Decadal precipitation
predictability is likely to decrease under future warming based on climate model simulations
(G. Boer, 2009). Therefore, how the PPP will change at subseasonal to seasonal time scales under future
warming deserves further study (Dong et al., 2018; Jiang et al., 2016; B. Kirtman et al., 2013; Scher &
Messori, 2019).

Sea surface temperature (SST) is a key indicator of global warming and a key driver of global extreme pre-
cipitation (R. P. Allan & Soden, 2008; X. Zhou & Khairoutdinov, 2017). SST anomaly is the major precursor
of tropical precipitation variability (Liu et al., 2018; Mamalakis et al., 2018) andmodulates numerous climate
patterns with underlying precipitation predictors such as theMJO (Maloney & Kiehl, 2002). The global‐aver-
aged SST is projected to increase ~3°C by 2,100 relative to preindustrial time based on the Intergovernmental
Panel on Climate Change (IPCC) Fifth report (Pachauri et al., 2014). How the warming SST influences pre-
cipitation predictability has not been consistently concluded (G. Boer, 2009; Giorgi et al., 2019; Luo
et al., 2010; Wang et al., 2015).

Unraveling how the precipitation predictability changes with warming SST will provide theoretical support
for future weather and climate forecasting. How the PPP change varies with warming levels, regions, and
temporal scales is yet to be clarified. To answer these questions, we use CMIP5 models to investigate the
PPP changes under future warming relative to preindustrial time. The spatiotemporal patterns of PPP
changes at 2‐week, 1‐month, 2‐month, and 3‐month time scales are examined over global lands. We also dis-
cuss the underlying reasons causing PPP change, with focus on SST and its predictability.

2. Methodology and Data

PPP describes the underlying precipitation predictability in principle (G. J. Boer, 2004). It is expressed as
the ratio of long‐term precipitation variance by the climatological variance. The climatological variance is
calculated on a daily scale over different full periods, and the long‐term variance is calculated on 2‐week,
1‐month, 2‐month, and 3‐month time scales. If the long‐term precipitation variance is distinguishable
from climatological variance, the precipitation at long‐term scales is potentially predictable. A detailed
calculation procedure of the potential predictability variance fraction (ppvf) method is referenced to
G. J. Boer (2004).

PPP ¼ σ2L
σ2

(1)

where σ2L denotes the long‐term variance, obtained through a low‐pass filtering averaged over long‐term
interval, and σ2 is the climatological variance using daily data. To illustrate this point, let us take the fol-
lowing example, the long‐term variance for 1‐month time scale is calculated by first averaging the data
over each 1‐month data concatenation without overlapping and then calculating the variance of the
1‐month averaged data. The climatological variance is obtained by the variance of the daily data over dif-
ferent full periods separately, for example, the preindustrial period or the future warming period, because
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the climatology may change with period. A PPP value close to zero indicates little predictability, and a
value close to one represents high predictability.

A total of 12 CMIP5 (Taylor et al., 2012) models is used to simulate the precipitation predictability at pre-
industrial control (PiControl), Historical, Representative Concentration Pathway (RCP) 2.6, RCP4.5, and
RCP8.5 warming scenarios (Table S1 in the supporting information). The PiControl experiments from
1850 to 1899 (P1) are assumed as preindustrial simulations. Historical simulations from 1956 to 2005
(P2) are used to represent the historical scenario. The CMIP5 simulations from 2051 to 2100 (P3) are
adopted as future simulations. A single model simulation may have large uncertainty, while an ensemble
of model simulations can reduce the predictability uncertainty to some degree. We calculate the PPP for
each individual model first to obtain an ensemble of PPPs and then calculate the mean, median, and
other statistics using the ensemble of PPPs. The SST variable from these CMIP5 models is used to calcu-
late the global ocean warming trend and potential SST predictability (PSSTP) using the same ppvf method
as PPP (Equation 1).

The historical and RCP8.5 simulations from 1980 to 2019 (P4) are used to calculate the absolute PPP under
recent global warming and then compared with observations. The observed precipitation data set from
Modern‐Era Retrospective analysis for Research and Applications Version 2 (MERRA‐2) data (Gelaro
et al., 2017) was used to calculate the PPP in the P4 period. The precipitation data fromMERRA‐2 have over-
all good performance compared to several reanalysis or interpolated data (Xu et al., 2020). All the data are
regridded into daily 5° × 5° resolution. We use a quadratic polynomial to fit the relationship between preci-
pitation or SST and time in a specific period and remove the quadratic trend by keeping the residuals. A
multiyear average of the daily precipitation or SST data set is regarded as seasonal impact on predictability
and is removed by subtracting it from the entire precipitation or SST data set. The detrending process was
conducted before the seasonality removal procedure.

3. Results and Discussion
3.1. Observed and Simulated Precipitation Predictability

Figure 1 plots the absolute PPP obtained from observations and models. The simulated PPP averaged over
global lands is consistent with observations (Figure 1a). The observed PPP is well within the bound of simu-
lations. The observed and simulated PPPs decrease from 2‐week to 3‐month time scales. The observed PPP is
consistent with ensemble simulations in the tropical regions (23.5°S to 23.5°N, Figure 1b). For the extratro-
pical regions (south of 23.5°S and north of 23.5°N), the observed PPP is close to the upper bound of model
ensembles.

Spatially, the predictability is higher in the tropical regions than in extratropical regions (Figure 1c), such as
the most areas of Africa, India, Malay Archipelago, Australia, most areas of South America, and Mexico,
consistent with existing studies (G. J. Boer, 2004; Koster et al., 2000; S. Li & Robertson, 2015; Zhu et al., 2014).
The higher PPP in the tropics is related to large‐scale climate modes such as ENSO (R. Allan et al., 1996;
Rasmusson & Wallace, 1983) and MJO (Zhang, 2005). ENSO is the major predictability source of precipita-
tion at seasonal scales in the tropics, while MJO is the largest intraseasonal variability in the tropical atmo-
sphere (B. Kirtman et al., 2013). The precipitation predictability sources in the extratropical areas may
include snow, sea ice, and some other large‐scale patterns (B. Kirtman et al., 2013). Model simulations exhi-
bit a similar spatial pattern with observations (Figure 1d), although the predictability by the ensemble mean
of simulations is larger than observations in some areas such as central Africa.

The spatial patterns of PPP generally show a decreasing trend with the increase of lead time (Figures 1c
and 1d). This result is expected because the variance of longer time scale data is generally less than that from
shorter time scale (Wilks, 2011). This result also complies with the knowledge that long‐lead precipitation
forecasts may be less accurate as short‐term ones (B. P. Kirtman et al., 2014; Xu et al., 2018). However, this
does not necessarily mean that seasonal precipitation is less predictable than daily short‐term precipitation.
Instead, the decreasing PPP from 2‐week to seasonal scales indicates that precipitation variance is more
accounted for at 2 weeks than seasonal scale, and 2‐week precipitation may be potentially more predictable
than seasonal total precipitation (G. Boer & Lambert, 2008).
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3.2. Predictability Change Under Future Warming

Figure 2 shows the PPP change under future warming scenarios and its connection with SST change. The
global median‐averaged PPP exhibits a decreasing trend when the warming levels rise from Historical to
RCP2.6, RCP4.5, and RCP8.5 (Figure 2a), although the spread is large. The decreasing PPP magnitude is
small and very close to each other among the 2‐week, 1‐month, 2‐month, and 3‐month scales (Figures 2a
and S1). A two‐sample t test indicates that the PPP changes on a short‐term scale and tropics may not be sig-
nificantly larger than long‐term scale and the extratropics at 90% confidence interval (Tables S2 and S3).
Although the ensembles show divergent PPP trend at these warming levels, the ensemble mean of these
models presents a steady decline, consistent with a previous study (G. Boer, 2009). The decreasing PPP is

Figure 1. The observed and simulated PPP values at (a) different time scales and (b) different regions. The spatial
patterns of observed and simulated PPPs are shown in (c) and (d), respectively, at all the four time scales. The 12
CMIP5 models are used to calculate individual PPP values in Figures 1a and 1b and the average in Figure 1d.
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related to the faster changing daily climatological precipitation variance relative to the long‐term variance
(Figure S2). The increasing daily and long‐term precipitation variances are related to the increase in the
precipitation events and extremes under water cycle intensification with global warming (Giorgi
et al., 2019; Pendergrass et al., 2017; Xu et al., 2019; Yoon et al., 2015; W. Zhang, Zhou, et al., 2019;
X. Zhang, Chen, et al., 2019).

Increasing precipitation extremes are related to the change in atmospheric moisture holding capacity with
temperature based on the Clausius‐Clapeyron (C‐C) relationship (Lenderink & Fowler, 2017; Lenderink &
van Meijgaard, 2008; Pfahl et al., 2017; Prein et al., 2017). The daily climatological variance is increasing
at a faster rate than long‐term variance, suggesting that the daily precipitation is becoming more chaotic

Figure 2. The projected PPP change under future global warming. (a) PPP change on the four time scales. (b) PPP change over tropical, extratropical areas and
globally. (c) Spatial patterns of PPP change averaged over all the CMIP5 models and the four time scales. (d) Global SST change. (e) Regression between SST
change and PPP change on the four time scales and (f ) over different regions averaged over four time scales. The colored points in Figure 2a denote different
CMIP5 models, and the line denotes the mean. The “×” symbol in Figure 2c indicates that the PPP change is significant at 90% confidence interval. The
predictability ensembles from the CMIP5 models are randomly sampled 1,000 times, and the data range between the 50th and 950th data points after sortation is
regarded as the 90% confidence interval. If the predictability change signal within the 90% confidence interval contains zero, the PPP change is not
significant and vice versa. The white areas in the world's land of Figure 2c indicate negative PPP change between −1% and 0. The data points in Figures 2e and 2f
denote a combination of CMIP5 models and RCP scenarios. A global area‐weighted average of SST and PPP changes is used in Figure 2e. The numbers in
parenthesis for Figures 2e and 2f denote the 90% confidence interval.
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than the long‐term average. Precipitation variability is closely related to atmospheric moisture content and
atmospheric circulation (Gao et al., 2012; Wu et al., 2020), such as moisture flux convergence (MFC), soil
moisture, and humidity. MFC can increase atmospheric humidity, enhance the moisture static energy and
atmospheric instability, and promote convection (Junquas et al., 2012; Kim &Ha, 2015; Tamoffo et al., 2019;
J. Wei et al., 2016). Soil moisture influences the fluxes of heat and moisture originating at the land surface,
thus altering atmospheric humidity, temperature, and precipitation (Tuttle & Salvucci, 2016). The variations
of MFC, soil moisture, and humidity all contribute to the changing precipitation variability under global
warming through local evapotranspiration and remote moisture transport (J. Wei et al., 2016), although
these effects may vary with regions.

The PPP change in the tropical areas has a larger model spread than the extratropics under future warming
(Figure 2b). As for the spatial patterns, a large fraction of global lands exhibit a decreasing PPP trend
(Figure 2c), such as the central and northern Africa, Malay Archipelago, northern Australia, South
America, United States, most parts of Asia, and Europe, although the PPP change over most areas is within
±1%. The evident PPP decline is seen in the tropical regions where climatological mean rainfall is high. A
slightly increasing PPP is seen in southern Asia, southern Australia, northern North America, southern
Africa, and part of Antarctica. The spatial patterns of PPP change may vary greatly among individual models
over different regions (Figure S3), especially for eastern and central Africa and northern and eastern South
America. The high PPP changes in Tanzania and Guianas among some models (Figure S3) are related to the
abnormal precipitation simulations in some years in models after removing the daily climatology. The
abnormal precipitation leads to abnormal precipitation variances (Figure S2) as well as the abnormal
PPPs (Figure 1) and their changes (Figure S3). There are very few areas with significant PPP change spatially,
suggesting divergent model results (Figure 2c).

The ENSO and MJO are the two major large‐scale climate modes accounting for the predictability over the
tropics. The Pacific ENSOmay be more challenging to predict under global warming (Jia et al., 2019), as the
ascending over the equatorial Atlantic is weaker due to an increased tropospheric stability in the mean cli-
mate, resulting in a weaker impact on the Pacific Ocean. The tropical static stability increases may weaken
the MJO's ability to influence extreme events in future warmer climate by weakening wind teleconnections
(Bui & Maloney, 2018). Furthermore, the poleward migration of the Hadley Circulation will change the
precipitation patterns in the tropics (Mathew & Kumar, 2019; Studholme & Gulev, 2018) and may weaken
tropical teleconnections.

The global SST is increasing over global oceans in the RCP8.5 scenario relative to preindustrial time
(Figure 2d). Some areas are projected to increase more than 4°C, such as the central and northern Pacific,
western Indian Ocean, and central Atlantic. High‐latitude areas near the poles exhibit smaller SST increase
than the tropics. This spatial SST pattern may seem different from the IPCC report (Pachauri et al., 2014) and
is dependent on models. Overall, the global SST is expected to increase under future warming period.

We regressed the SST change and PPP change using a linear model and obtained a coefficient of determina-
tion (R2) of 0.45, 0.37, 0.28, and 0.25 for 2‐week, 1‐month, 2‐month, and 3‐month time scales, respectively
(Figure 2e). The slopes of regressionmodel for all the four time scales indicate a decreasing trend of PPP with
SST increase, and the decrease on short‐term time scale is possibly larger than that of long‐term scale.
Figure 2f demonstrates the regression of PPP change averaged over the four time scales and SST change.
The slope of the linear regression model suggests that a −0.8% (−1.1%, −0.4%), −0.08% (−0.1%, −0.05%),
and −0.3% (−0.4%, −0.2%) PPP change per 1°C increase in global SST is expected for tropical, extratropical
areas and globally, respectively. The PPP decrease is possibly slightly larger for short‐term time scales than
that of long‐term scales (Figure S4). The estimated PPP change trends are similar when removing the
extreme SST values beyond 5°C increase in the regression (Figure S5).

3.3. ENSO‐Precipitation Correlation, SST Predictability, and Connection With PPP

Figure 3 shows the ENSO‐land precipitation correlation change, PSSTP change, and the relationship
between PSSTP and PPP. We aim to explore the possible causes influencing PPP change under future
warming, especially the SST. Figure 3a plots the changes of land precipitation correlation with ENSO
averaged over the four time scales with lags of 2 weeks, 1 month, 2 months, and 3 months under RCP8.5
scenario relative to preindustrial simulations. Here ENSO is represented by the SST anomaly over Niño
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3.4 region (5°N to 5°S, 170–120°W). ENSO‐related precipitation correlation is increasing over large parts of
the world (Figure 3a), indicating possibly enhanced ENSO‐induced land precipitation events under future
warming (Fasullo et al., 2018; Yeh et al., 2018; Z.–Q. Zhou et al., 2014). The ENSO‐land precipitation
correlation is divergent among the used CMIP5 models (Figure S6), and there are limited areas exhibiting
significant model agreement spatially (Figure 3a), suggesting considerable model uncertainty. However,
the enhanced ENSO‐land precipitation correlation does not suggest increased precipitation predictability,
because ENSO predictability may not increase in a warmer world (Fasullo et al., 2018; Yan et al., 2020).

Figure 3b shows the PSSTP change from P1 to P3 under RCP8.5 scenario. The PSSTP generally decreases
with future warming over most ocean basins except the poles, the central Pacific, and some small areas.

Figure 3. The ENSO‐land precipitation correlation change, PSSTP change and connection with PPP under future warming. (a) ENSO‐precipitation correlation
change. (b) PSSTP change in P3 relative to P1. (c) Regression between SST change and PSSTP change on different time scales and d regions. (e) Regression
between PSSTP change and PPP change on different time scales and (f ) regions. The ENSO‐precipitation lagged correlation is calculated by correlating the Niño
3.4 index and precipitation at 2‐week, 1‐month, 2‐month, and 3‐month time scales and then averaging the four scales. The lags are assumed the same as
the used time scale. For example, the 2‐week correlation is calculated by correlating the ENSO index 2 weeks before the target time and the precipitation at the
target time. The “×” symbol in Figures 3a–3b indicates that the result is significant at 90% confidence interval. The significance is calculated the same with
that of Figure 2c. The white areas in the world's land of Figure 3a indicate negative correlation change between −0.02 and 0. The white areas in Figure 3b indicate
land part, and their PSSTPs are not calculated. The numbers in parenthesis for Figures 3c–3f denote the 90% confidence interval.
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However, the insignificant changes in PPP (Figure 2c) and PSSTP (Figures 3b and S7) hinder a robust
attribution spatially. The changing PSSTP is probably related to the intensification of oceanic stratification
and the acceleration of propagation of Rossby waves (S. Li et al., 2020). Figures 3c and 3d show the linear
relationship between PSSTP change and SST change over different time scales and regions, respectively.
The PSSTP is likely to decrease when the SST increases, as the slopes of these regressions all show a nega-
tive relationship. The decreasing PSSTP magnitude is smaller on short‐term time scale than long‐term
scale (Figure 3c) and is higher in the tropics than that in the extratropics (Figure 3d). Similar results could
be seen when removing the extreme high SST values in the regression (Figure S8). Present studies focus
more on the SST‐forced climate predictability and less on the SST predictability itself (Newman, 2007;
Wajsowicz, 2005). The intrinsic physical mechanisms influencing SST predictability need further
investigation, such as ocean stratification, SST gradient, entrainment of the mixed layer, and human
greenhouse emission.

We regressed the PSSTP change and PPP change to examine their connections as precipitation predictability
mainly comes from SST variability. A positive relationship is seen between PPP change and PSSTP change
on the four time scales (Figure 3e) and different regions (Figure 3f). When the PSSTP increases, the PPP is
likely to increase, despite at a slower rate. A larger impact of PSSTP on PPP is expected on short‐term time
scale than long‐term one and is expected over tropical areas than the extratropics. The statistically significant
relationship between PSSTP and PPP indicates a strong impact of SST predictability on precipitation
predictability.

We calculated the SST predictability over the Niño 3.4 region to represent the potential ENSO predictability
(PENSOP). The relationship between PENSOP change and PPP change is examined using linear regression.
The PENSOP change could explain a limited percentage of PPP change (Figure S9). For example, 17% PPP
change globally could be explained by PENSOP change at 3‐month time scale, and the percentage decreases
when the time scale decreases (Figure S9). A 9% PPP change globally could be explained by PENSOP change
averaged over the four time scales. The result is expected because ENSO could account for a limited fraction
of global precipitation variability (R. Allan et al., 1996; Haszpra et al., 2020; Rasmusson & Wallace, 1983;
Westra et al., 2015).

4. Conclusion

The PPP is estimated from CMIP5 simulations using ppvf method over global lands. In the future warming
period, the PPP is likely to decrease 0.8%, 0.1%, and 0.3% over tropical, extratropical areas and globally,
respectively. Short‐term PPP is expected to decrease much more than that in the long‐term scale, indicating
that short‐term precipitation predictability is more likely to be affected by global warming. Despite the diver-
gent model simulations, a general decreasing PPP is projected under future warming based on the multimo-
del mean. The decreasing PPP poses increasing challenges for weather and climate prediction in the future,
especially under the RCP8.5 warming scenario.

The faster increasing daily precipitation variance relative to monthly or seasonal precipitation variance leads
to declining PPP, indicating that long‐term precipitation variance is less distinguishable from short‐term
weather noise. The declining PPP under warming indicates a more chaotic and less predictable climate sys-
tem. PPP decrease is closely related to the decrease of PSSTP, although the ENSO‐related precipitation cor-
relation may be enhanced in a warmer climate (Fasullo et al., 2018; Yeh et al., 2018). The ENSO‐induced
precipitation events are probably less predictable due to decreasing PSSTP. The potential changing ENSO
predictability could explain a limited percentage of PPP change.

The decreasing PSSTP and PPP under future warming indicates that SST and precipitation are potentially
less predictable when the warming continues. However, the practical predictability is highly dependent
on the knowledge of predictability source and models (Mamalakis et al., 2018; Pan et al., 2019; Wang
et al., 2015). The predictability could be increased if new predictability sources are found or better model
physics are used. Therefore, the PPP results may vary with regions and models. Despite the discrepancy
between theoretical and pratical estimations, precipitation predictability is probably decreasing in the
future, bringing potentially larger risk and vulnerability to humans, agriculture, and infrastructure exposed
to extreme precipitation.
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Data Availability Statement

The CMIP5 data are available at the website (https://esgf‐node.llnl.gov/projects/cmip5/). The MERRA‐2
data are available at the website (https://gmao.gsfc.nasa.gov/reanalysis/MERRA‐2/).
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